DATA MODELING COURSE CONTENT

1. Introduction to Logical Data Modeling

- Importance of logical data modeling in requirements
- ♣ When to use logical data models
- Relationship between logical and physical data model
- **♣** Elements of a logical data model
- ♣ Read a high-level data model
- Data model prerequisites
- **♣** Data model sources of information
- Developing a logical data model

2. Project Context and Drivers

- Importance of well-defined solution scope
- Functional decomposition diagram
- Context-level data flow diagram
- Sources of requirements
 - o Functional decomposition diagrams
 - Data flow diagrams
 - Use case models
 - Workflow models
 - Business rules
 - State diagrams
 - Class diagrams

- Other documentation
- Types of modeling projects
 - o Transactional business systems
 - o Business intelligence and data warehousing systems
 - o Integration and consolidation of existing systems
 - o Maintenance of existing systems
 - o Enterprise analysis
 - o Commercial off-the-shelf application

3. Conceptual Data Modeling

- Discovering entities
- Defining entities
- Documenting an entity
- Identifying attributes
- Distinguishing between entities and attributes

4. Conceptual Data Modeling-Identifying Relationships and Business Rules

- Model fundamental relationships
- Cardinality of relationships
 - o One-to-one
 - One-to-many
 - Many-to-many
- ♣ Is the relationship mandatory or optional?
- Naming the relationships

5. Identifying Attributes

- Discover attributes for the subject area
- Assign attributes to the appropriate entity
- Name attributes using established naming conventions
- Documenting attributes

6. Advanced Relationships

- Modeling many-to-many relationships
- **♣** Model multiple relationships between the same two entities
- Model self-referencing relationships
- Model ternary relationships
- Identify redundant relationships

7. Completing the Logical Data Model

- Use supertypes and subtypes to manage complexity
- Use supertypes and subtypes to represent rules and constraints

8. Data Integrity Through Normalization

- Normalize a logical data model
 - o First normal form
 - Second normal form
 - o Third normal form
- Reasons for denormalization
- Transactional vs. business intelligence applications

9. Verification and Validation

- Verify the technical accuracy of a logical data model
- Use CASE tools to assist in verification

Verify the logical data model using other models	
o Data flow diagram	
o CRUD matrix	
Contact for Data Modeling Training: +919885022027	